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TECHNICAL NO+E 3407

INTERACTION OF A FREE FLAME FRONT WITH A TURBULENCE FIELD

By Maurice Tucker

Small-perturbation spectral-analysis techniques are used to obtain
the root-mean-square flame-generated turbulence velocities and the at-
tenuating pressure fluctuations stemming from interaction of a constat-
pressure flsme front with a field of isotropic turbulence in the absence
of turbulence.decayprocesses.

The snisotropic flame-generated turbulence velocities are found to
~ be of about the same intensity as those of the incident isotropic turbu-
=
3 lence, the lateral turbulence velocities being always lower but the lon-

* gitudinaJ velocity is somewhat increased for flame-temperature ratios in
excess of 7. The small-perturbation analysis indicates that the incre-
mental turbulent flsme speed is a second-order qusmtity composed of twu

s parts: One part represents the root-mean-square area of the turbulent
flame front; the other represents the contribution of the transverse ve-
locity fluctuations which results from the flame-front distortion. Di-
rectly at the flame frcnt the noise-pressure levels of the pressure
fluctuaticms are fairl~ intense (59 to 81 decibels referred to 0.0002
dyne/sq cm) even at moderate approach-flow turbulence intensities.

INTRODUCTION

Development of high-output jet engines has stimulated interest in
the role played by turbulence in combustion phenomena. In the earliest
studies of flame-turbulence interaction, Damkohler (ref. 1) and Shelkin
(ref. 2) utilized mixing-length theories of turbulence to obtain semi- .
quantitative relations for predicting flame speeds. Da@ohler intro-
duced the concept that turbulence of a scale large relative to the
flame-front thickness increases the average flame speed by increasing
the instantaneous flame surface area. The authors of reference 3 were

—

unable to confirm the relations of references 1 or 2 by their experi-
mental values of turbulent flame speed in Bunsen burners. Experiments —

on flames stabilized In channels (ref. 4) suggested that approach-flow
turbulence had little effect on burning velocity &d that the disturb-
ances affecting turbulent flame speed were primarily flame-generated.

u A similar conclusion was arrived at in reference 5.
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In an attempt to obtain agreement between theory and experiment,
KarhvLtz, Denniston, and Wells (ref. 6) aridScurlock and @ver (ref. b
7) have incorporated the concept of flame-~enerated disturbances in
their recent.theories of turbulent flame speed which utilize G. 1. ““
Taylor’s one-dimensional theory of diffusion by continuous movements.
The somewhat arbitra~ assumption is made in the analyses of both ref-
erences 6 and 7 that these flsme-generated disturbances constitute ad-
ditional turbulence only. In reference 6 the ener~ of the flame-
generated turbulence is taken as the difference between kinetic ener~
of the burned gas in the absence of turbulence and the kinetic energy i

u
obtained by using the average velocity of the burned gas normal to the -2
turbulent flame front. In reference 7 the flame-generated turbulence .

ener~ is obtained frcm a mcmentum balanc~ of unburned and burned gases
before and after an assumed mixing of the burned gas.

.

The data obtained in reference 8 on pentane-air flames baffle-
stabilized in a rectangular duct suggest-that the methods of references
6 and 7 overestimate considerably the tufl”ulencegenerated b~ flame -
turbulence interaction. Apart from the question of validity of such
methods of calculating flame-generated ttitn.ilence,objections have been
raised (ref. 9) to calculations of flame%peed made on the basis of a
hypothetical upstream t~bulence compounded frm approach-stream turbu-
lence and turbulence generated downstream-of the flame as was done in
reference “7and implied in reference 6. ‘-...

The present analysis is primarily concerned with the turbulence ve-
locities and other fluctuation quantities associated with the linearized
interaction of a free flame (not influenced by bounding walls) with tur-
bulence present in the combustible mixture. Such turbulence will be re-
ferred to as apyroach-flow turbulence. The flame is treated as a dis-
continuity specified by the appropriate fundamental (laminar) flame
speed and flame temperature. The interaction of such a flame front with
a transverse plane wave, that is, a vorticity wave or shear wave, of ar-
bitrary inclination relative to the front is first analyzed. The ef-
fects of an entire.spectrum of transverse plane waves constituting a we~”
field “ofturbulence are then developed from th~ single-wave results. The
statistical.or root-mean-square fluctuation quantities describing the

.

.

?

.-

.-

. .
.

-..

pressure fields and the anisotropic
from interaction of the flame front
lence are obtained for the limitirig
Some discussions of turbulent flame
also presented.

FLAME - TURBULENCE

flame-generated turbulence resulting
with-isotro~ic approach-flow turbu-
case ‘ofconstant-pressure combustion.
s~eed and of combustion noise are. .

HiTERACTION PROCESS .

Turbulent motion may be regarded as a Four5.ersuperposition of a
very large number of different-sized and randcmilyoriented component

●

plane-wave motions. The customary assumptions concerning the turbulence
v.—
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(see ref. 10) are also made in the present analysis - namely, that tur-
bulent decay effects are negligible and that the density fluctuations
associated with the turbulence are also small enough to be neglected.
The first assumptim, which implies inviscid flow and very small turbu-
lent velocity fluctuations, permits linear superposition of the compo-
nent waves. With the second assumption, the continuity equation re-
quires that these Fourier waves be transverse plane waves, that is,
vorticity or shear waves. For each of these waves the local velocity
vector A is perpendicular to the vector ~, normal to the wave front.
The vect=r ~ is termed the wave-number vector; its magnitude k is
termed the wave number, which is defined as 21-rdivided by the wave
length. All symbols are defined in appendix A. Any one of the parallel
planes containing both the local velocity vector A and the wave-nuniber
vector & is called the “polarization plane.” –

Because of the assumed linear superposition of the component waves,
the ccmplete interaction results can be obtained from study of the in-
teraction of a plane flame front with a single-component transverse wave
of the turbulence field. For simplicity this typical vorticity wave
will first be taken as a two-dimensional wave. Generalization to the
three-dimensional case will be made later. The configuration considered
is shown in sketch (a):

,Y

Burned gas

“Q

I Combustible mixture
k

\

— pc + p;

h ——
A

90° ‘4V’ ‘;,C
1 S,C

—d t-
U’S,c ‘;,C

‘K
Mean psition of Instantaneous flame front
flame front

(a)

.

. ..*
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A flame front moves with mean velocity UT inta-~ inviscid combustible

mixture. This mixture is at rest, but contains a vorticity wave with
Ve~OCity VeCtOr Q (components u~,c and v; c) and, with wave.n~ber

vector & inclined at an angle Q to the yo~itive direction of the

‘c-axis. In the absence of any perturbation interaction, the plane
front propagates into the combustible mixture with velocity U (the
laminar flame speed). As indicated in appendix B, the motion of the
burned gas whose welocity V is constant is away from the flsme front.
The flame front is assumed to be of infinite extent in directions tr~s-
verse to the direction of the xc-axis.

References 11-and 12 have shown that a weak inviscid disturbance-
field may be resolved into a stationary component and a moving compo-
nent, both relative to the mean local flow. The moving component is
an irrotational isentropic pressure-velocity disturbance. The station-
ary component, which is convected by the mean local flow, is a ccmstant-
pressure disturbance containing any vorticity fluctuations and entropy
fluctuatims present in the disturbance field. Thus, the interaction
of the flame front with the vorticity wave would be expected to generate
both an irrotational disturbance with velocity components ~,b’ ‘~,b
and a rotational disturbance with velocity components ‘:,b~ ‘gjb ‘n
the burned gas, and an irrotational disturbance with velocity components

%,CJ V;jc in the combustible mixture. The resulti~ velocity fluctua-

tions, which include both the irrotational and rotational distur”mnces,
are designated as u:, v; and U&, Vi for the combustible mixture and
the burned gas, respectively. !Ilheflame frbnt is displaced by an &mow—t
~’(Y,t) fr~ its mean or unperturbed position as a result of the
interaction.

—

.-.

—

—
—. —

.—

—

The diagrams of figure 1, which are similar to those used in refer-
ence 12, may prove helpful in visualizing the interactim process. sup-
pose that at some.instant t~ the flame intersects a front of the vor.
ticity wave at point PI of figure l(a). At a later time tl + 5t, the
flame has moved a distance U5t and now intersects the stationary vor- --
ticity wave front,at point P2. A vorticity wave with front parallel to
line QP2 is the~ prduced in the burned gas. A cylindrical sound wave
is generated at point PI at time t~ and propagates at speed ab
into the burned gas while being convected w~~h velocity -V. Another
cylindrical wave is generated at point Pl at time t~ and propagates
into the combustible mixture with speed ac. The cylindrical wave
fronts thus generated form envelopes (Mach lines) in both the combusti-
ble mixture and the burned gas which constitute plane sound waves.

For the wave-inclination angle Q
.

shown in figure l(b), an enve-
lope cannot be formed on the burned-gas side of the flame front. The

“i?““
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cylindrical sound waves thus expand independently and are
U&ted. On the combustible-mixture side of the front, the

thereby atten-
cylindrical

sound waves meet at the common tangent point P2. For tidination ~-
gles less than the crit~cal angle shown, attenuating pressure waves are
also produced in the combustible mixture””until another critical angle
180° - Q is reached. Below this second critical angle, plane sound
waves are again obtained. These critical angles may be obtained from

the geometry of figure l(b). For small flame Mach nunbers where M= u
~)
c

~cr,c = sin-l M

As the flame Mach number M decreases, attenuating waves are produced
for a wider range of inclination angle. In the limiting case of very
slow flow (constant-pressure combustion),l only attenuating pressure

w waves appear in combination with the vorticity waves if 0° < ~ < 1800.
Quantities associated with the pressure “wavevanish when @ = 0° or
180° because the incident vorticity wave then passes through the com-

; bustion front without distorting the front.

SINGLE-WAWE ANALYSIS

Two-Dimensional Formulation

The interaction process described in the preceding section is now
formulated analytically for the passage of a combustion front through
a single weak two-dimensional vorticity wave of constant density in-
clined to the flame front. The”case of a vorticity wave in three di-
mensions is considered later.

The combustion front is assumed to be completely specified by its
laminar flame velocity U and the ratio of stagnation temperatures z
in the burned gas and in the combustible mixture, respectively. In
the absence of any perturbations, the equations for conservation of
momentum, energy, and mass-flaw rate, respectively, as written for a
reference frame moving with the flame front, are

1It can be shown that the static-pressure ratio across a flsme
front is givenby pb/pc = 1 - y(’c- 1)M2 + . . .

.

‘#
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-p, + pcu~ = pb + pb(u - V)2

(
yR

~~Tc+ 12~u
)

rRg 1 (U-V)2=-----@+~Y-
}

1
Pcu = %(U - v) J

(1)

where subscripts c and b designate stations in the combustiblemix-
ture and in the burned gas, respectively. For simplicity it has been
assumed that the combustion process does not entail a change in the
number of mbles per unit mass of gas; also, differences in the ratio
of specific heats for the burned and unburned gas are i~ored. The
quantity (~ - 1) is then indicative of the increase in stagna~ion en-

—

thalpy or heat relea8e.

For the interaction problem the result- flame-front distortion
~’(y,t) must be considered in addition to tliegenerated disturbances
previously mentioned. Thus, both the flame-front perturbation veloc-

ity ~~~ andtheinstantaneous flsme-front slope ~s~~ will

appear in the equations of motion. The conservation equations may still
be applied in a coordinate system moving instantaneouslywith the dis-
torted flame front since extreme gradients occur across the front and
small disturbances are postulated. The various perturbation quantities
(designated by primes) are assumed to have zero space or time averages.
The flame speed UT (see sketch (b)) will thus include any time-

independent contributions arising from the perturbations.

‘i L — — — — —— —— —
-(UT - vf+q-~) Tv,— — — —

I
Perturbed flame front

?

-.

.

v(b)
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Conservation of normal and
rate provide the following

tangential momentum, energy, and Wss-flm
relations:

L

(2d)(Pc+ P:)(%+K: -4+4%;) = (Pb+G#(qp - VT+G-4 +V;.E;)

Small-perturbation techniques are used to make the interaction
problem amenable to analysis. Then, if the velocity perturbations are

assumed to be small relative to the flame speed UT and the flame-frent

slope g; is also assumed to be very small so that terms of second or-

der in the fluctuation quantities may be neglected, application of the

linearized state equation Z!l= L+* and utilization of equations

(1) permit the foJJ.o%cb.gbo&da~pconditims at the flame front to be

obtained from equations (2):

where

(3a)

(3C)

(3d)

(4)

u
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It has also been assumed that the flow upstream of
tropic. It wi3J be shown in the section Turbulent
UT = U is correct through first-order terms.

NACA TN 3407

the flame is isen-
Fkme Speed that

Another relation is required at the flame front. For the two-
dimensional case under consideration,the local inste.ntaneousnormal
propagation velocity U + HJ of the distorted flame front into the
combustible mixture at rest (see sketch (b)) is

The incremental propagation velocity 5U will be determined from exist-
ing information on laminar flames. Same support for this procedure is
given in reference 13. As reported therein, radimt flux-intensity
measurements on laminar and turbulent propane-air flames suggest that
a small surface element of a turbulent flame is chemically and physi-
cally the same as that of a corresponding laminar flame.

The propagation speed of a Mninar flame is affected by both the
ambient pressure and the ambient temperature. Although the functional
relations have not b~en rigorously determined, preliminary indications
are that the pressure effect is much smaller than the temperature ef-
fect. In the present analysis the local flame propagation speed is
assumed to depend otiy upon the temperature of the cambustfblemixture,
that is,

NJ
()

=~dTc= $T~
c c

With the empirical relation obtained in reference 14 as a guide, it is
assumed that U = rl + r2~ where rl, r2, and n are constants which

depend upon the fuel and oxidant under consideration. Thus,

and

.

v
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Correct through first-order terms wherein ~ = U, the following bound-
U ary condition is obtained at the flame front:

(3e)

In a coordinate system fixed In space, the equations of motion for
the two-dimensional fluctuation quantities in the burned gas with terms
of second order neglected, are

au;
v

1 ?&—=-— —
“ dxc pb dxc

For a coordinate system moving with constant velocity V, the preceding
equations reduce to the seineform as the corresponding equations for the
fluctuation quantities in the combustible mixture relative to a coordi-
nate system fixed in space. Thus, the flow equations for both the
combustible-titure fluctuations and the burned-gas fluctuations may be
written, with appropriate subscripts c or b, as

au1 1 ap’
K= -Fz

bvI 1 ap’
T=-~&-

$’-”E+a

i‘~~=-’@+F)

(5)
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The
are

t=o

coordinate ey~tans
indicated In sketch

tit

Y
t

I

Xc, y ~ Xb) Y for the first-order analysis

(c).

I
I
r“

=’

I

\

Combustible mixture

I Instantaneous flame front

~xc=ut75
(c)

A two-dimensionalvorti.citywave in the combustible mixture with
velocity vector of magnitude A and having its wave-number vector k
inclined at an angle q to the positive direction of the xc-axis m;
be written in the form

‘~c. (Asinrp)eiv, >= (- A cos q)eiv

where v a kixc + k~y} ~d ki and k; are components of the wave-

number vector ~ in the ~- and the y-directions, respectively, with
k;/kj = taJIQ. As a result ~f the linear boundary conditions of equa-

tions (3), obtaining a unique solution of therinteraction problem re-
qutres that the arguments of alJ disturbsace waves match at the flame

.

.
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frent. This matching requirement together with provisim for diff’er-
* ences in phase angle yields the following form for the vorticity wave

present in the burned gas:

*= (f+ + i~2)ei*, Ii&. (11 + i12)ei*

where

V“ * Vk+% ‘k;y

11

Pressure fluctuations generated by the interaction must satisfy the
following wave equation, with appropriate subscripts c or b, which is
obtainable frcanequations (5):

*-a’(s+*)=
The present analysis wti be concerned with the

o (6)

limiting case of very—
3 slow flow (constant-pressure combustion). It is clear from the rela-

tions given for the critical.wave-inclination angles qcr,c and ~a,bas> that, for very slcfwflows, o~y the irratational isentropic pressure
waves described in the section FIAME - TURBULENCE INTERACTION PROCESS
will be generated by the interaction. The form of these pressure waves
that satisfies equation (6) has already been established in reference 12
in terms of the variables q and ~, where

\
qc = (fc)(xc - Ut)

1

(7)

The variable q is proportional to the distance from the flame front.
At the front, q= = @ = O; upstream of the flame, qc is positive; and

downstreamof the flame, ~ is positive. The equation K = constant
defines pl~eS mOVing with constant velOcity (Ud)c,b at an -e
tan-l(c/b)c,b to the flame velocity U. Equation (6) takes the form
of Laplace’s equation

(5+$E=”

. .. ‘.-
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e

2s!=’22”% .}

(8)

Matching erguments of the pressure and vorticity waves at the combustion
front where q = O and satisfying the requirements of equations (8)
provide the following values for the constants of equation (7):

Cc=cb= k;, bc = -
k~M2

1- M2’
bb .

()lu- V U2
lT T

%

“*’ u- V 2 U2J
u T

‘b

(9)

In additiou to the boundary condition from equations (3), the pressure

fluctuations will be required to satisfy the boundary condition ~ = O
P

at T==. Utilizing equations (36) and (3”7)of reference 12 yields

P: ic&vc—. (Rl+iR2)e
PC

% i~b-~
— = (Jl + iJ2)e
%

(lOa)

(lOb)

.-

.

In the combustiblemfxture, density fluctuations are associated only
with the pressure fluctuations according to the isentropic relation

P; 1 l?:

~=?g’
In the burned gas, density fluctuations may also be caused

.
by entropy fluctuations generated by flame distortion and heat-release .
fluctuations, if present, as well as by pressure fluctuations. Velocity
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fluctuations are associated with both pressure fluctuations and vortic-
ity fluctuations. It is convenient to deal with the pressure coeffi-

P’cient —. Thus, the disturbances arising from the interaction of
pcu.2

the flame front and incident vorticity wave take the following forms:

4

P: i~c-vc _— = ~ (Rl + iR2)e (R(l) + #))ei~c-7c
PCU2 yM2

P; pb ‘~b-~b =
— = — (Jl + iJ2)e - (J(l) + iJ(2))ei~b-~b
PCU2 PCU2

‘~b-~b + (Ll + iL2)ei*Z = ~ (Jl + iJ2)e
pb

# . (Nl + iN2)e‘$)-~b
+ (~ + iG2)eiv

%
— = (Pl + iP2)e

‘~b-~b
u + (11 + i12)ei~

~ = (Wl + iW2)e
ic.c-?~

u + (A sin q)eiv

The flame displacement velocity may be written

(1OC)

(103)

(lOe)

(lof )

(log)

(lOh)

(loi)

(1OJ)

To satisfy the requirements that the arguments of alJ disturbsmce quan-

tities match at

slope must take

the flame front and that 32E #g
*=-’

the flame-front

the form

(lOk)
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.

Integration of equation (lOj) with respect to time t gives the flame
displacement as

Extension to Three-Dimensional Disturbances

Equations (10) describe the interaction of a flame front
constant-density vorticity wave having velocity components

+

(102)

with a

1
U:)c

u = (A sin 9)eiV and ~ = (- A cos q)eiv

in the xc- and y-directions, respectively. me vorticity wave may be
.

Ws,cconsidered to have a third velocity component ~ = CeiV in the z-

direction. In the preceding linearized analysis, the amplitude C! was #
not prescribed. This component, which is normal to both the u’ and _
v’ components and parallel to the plane of the flame front, then is
associated with a corresponding ccmponent of we vorticity wave in the

~–
. —

burned gas ~ = Cei*.

Inasmuch as turbulence fields are three-dimensional, the interac-
tion equations must be revised accordingly for application to the spec-
tral smalysis which follows. Assume, as shown in sketch (d), that the
polarization plane whfch will contain the wave-number vector ks is in-
clined at sane angle. 8 to the xl,c~ x2,c-piane of a new coo–titnate
system xl,CJ x2,c~ X3,C fixed in space for the combustible mixture.

‘zjc

%,C

(d)

w
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The corresponding coordinate system ‘l,b~ x2,b, x3,b for the burnea

ga’sis assumed to be moving with mean-flow velocity V. Components
kl, k2, ad ‘3 of the wave-nunibervector ~ tithe directions of

xl,c’ X2,CY =d X3,C) respectively, are

kl=kcosq “)

k2 =ksingcos6

1

(U)

ks=ksinqsine

With primed perturbation vector quantities referring to the original co-
ordinates Xc, xbj yy z and unprimed perturbation vector quantities re-

ferring to the xl,c~ x2,c~ X3,C and xl,b> ‘2,b~ ‘3,b coordinate sys-

tems, the f’o~owing transformation relations apply:

This

tion
axes

Ul,c = u: ul,b = U;

UZ,C = V; cos e - W; sti e ‘2,b

i

=v{cOse-w{stie

U32C = V; Sk e + W: cos e ‘3,b .v{stie+w{c0s6

g=gf (12)

Et ‘e:

Ex2c=g;c08e
J

‘X3,c
.~~ sin e

notation refers only to equation (12).

With the use of equations (10) and (12), the interaction fluctua-
quantities (again designated by primes) referred to the coordinate

xl,c> X2,CJ X3,C -d xl,b~ ‘2,b~ ‘3,b may be written as

.
“.
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P:
—= (R(l) + ~(2))ei~c-~c
PCU2

P; ‘! ‘qb(J(l) + iJ(2))e .b
*=

‘!?b-qb
(Jl+ iJ2)e .+‘(L1+ iL2)ei*

‘CC-?C+ (A sin ~)eiv(W1 + iW2)e

U;)c— . (Xl + ix2)(cos e)e
u ‘Cc-qc - (A cos V cos e + C sin e)eiv

4,C
u = (Xl + iX2)(sin 8)eiCc-qc - (A cos q si~ 8. C cos @)eiv

Ui,b
— = (Nl + iN2)e

‘~b-qb
u + (GI.+ iG2)eiV

‘~b-~b‘?fb = (Pl + iP2)(cos 8)e
[ 1+(11+i12)cos 8 - C sin G eit

%,b ‘~b-qb
u = (P1 + iP2)(sin e)e

[ 1+(Il+iI.2)sin8+C cos 8ei*

c;
— = (Hl + i~)eiou

E’X2 c’= (El+ iH2)(tsn Q cos ~)eio
>

13 c = (Hl + iH2)(tm Q sin e)eiaE
>

(H2 - iH1)eiU
~s =

‘; A

(13)
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The fluctuation amplitude coefficients of equations (10) or (13)
may be detezzninedfrom equations (3] and (5). Details of the solution
are given in appendixes B and C. The general solution for the attenu-
ating pressure-wave regime is indicated in appendix B. Inasmuch as the

flame Mach number Ma —u “fsgenertiy much less than 0.01, the Umit-
~c

ing case of very slow flow (constant-pressurecombustion) provides a
reasonable simplification of the problem and only the attenuating-wave
solution need be considered. The amplitude coefficients for this lim-
ithg case are given in appendix C (eqs. (C8)). \

Equations (13) and (C8) describe the linearized interaction of a
constant-pressure flame front with a single vorticity wave or shear
wave having its wave-number vector & inclined at an angle q to the
direction of travel of the undisturbed flame front and having its plane
of polarization inclined at an angle 13 to the Xl,c, x2,c-plane of

the coordinate axes xl,c, x2,c, x3,c. The wave-number vector of the

shear wave generated in the burned gas makes an angle
% = *m-l(~ tin ~) with the direction of propagation of the undisturbed
flame front. Attenuating potential fields are generated in both the
combustible mixture and the burned gas. Physical quantities associated
with these fields attenuate exponentially with increasing distance fran
the flame front. The amplitude coefficients for a given heat release
(a prescribed %), a given inclination angle ~ and polarization angle
9 depend upon both the intensity of the incident vorticity wave and the
heat-release perturbation parameter %’/%. In the absence of such heat-
release perturbations, there are no density fluctuations in the burned
gas (correct to order M2).

These single-wave results may be used to determine the interaction
of a constant-pressure combustion front with a turbulence field of con-
stant density for the case of negligible turbulence decay. The turbu-
lence field will contain an infinite number of transverse plane waves
with all wave lengths and planes of polarization. The spectral analysis
technique used in obtaining such a superposition of waves wi~ be dis-
cussed briefly before proceeding with the interaction problem.

SPECTRAL ANALYSIS,

General Considerations

A turbulence field satisfying
equation may be represented.by the
transverse waves:

the incompressible-flow continuity
following superposition of plane
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m

U(x,t) =
JJJ

ei~”%Z(k, t)—— ——

where x is a position vector, k is a wave-number vector, t is the
time, ~d dz(k,t) is the random-amplitudevector of a component wave;——
and the subscript i take6 on the values 1, 2, and 3. The quantity
dZ(k,t)ei&m~ represents the contribution to the velocity field from a
~l-me element dk in wave-number space. When, as in the present case,
the equations of ~otion are linear there is no modulation or interfer-
ence between component waves, and the various statistical quantities
describing a randcm field may be obtained from the results of a single-
wave analysis. To avoid the interpretative difficulties associated with
the random variable Z(k,t), which is nondifferentiablewith respect to
y, use is made of the-t~chniques of references 10 and 15 which utilize
correlation spectra rather than amplitude spectra in the analysis of
homogeneous turbulence.

A velocity correlation is defined as the ensenibleaverage
ui(~,t)uj(~’,t) of the pr~uct of a fluctuation-velocitycomponent ui

at & and a component Uj at ~’ = ~ + ~“ where r is a separation
vector. The ensemble average, designated by a bar,-may be regarded as
the result of averaging the product ~(~,t)u~(~,t) at a given instant

over a very large number of statistically similar fields. The nine ve-
locity correlations ~ constitute the velocity correlation tensor

Tij(~)~J>t)* For a homogeneous field, Ti~ depends only on ~, so that

the tensor maybe written Tij(~,t).

As shown in references 10 and 15, the velocity correlation tensor
has the following Fourier integral expansion:

_“-g

$

:

P

where Fij(k,t) is the spectral tensor function, @ij(k,t) is the spec-

tral tensor–density of a homogeneous turbulence field–and

where dzy(~, )t denotes the complex conjugate of dZi(~jt). For r = O

and i = j, equation (14) may be written
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. dg(>,t)dzi(g,t) (16)

For homogeneous turbulence fields, wherein ensemble averages and space
averages are identical, equations (15) and (16) provide the basis for
obtaining the spatial mean-square velocity components frcm the single-
wave results given by equations (13) and (C8). Equations (15) and (16)

g are also applicable to scalar fields. In the absence of viscosity, as
w postulated, the shear-velocity fields present In the ccmibustiblemixture

and in the burned gas are homogeneous and application of equation (16)
presents no ccanplications. The correspondingpotential-flow fields,
although spatially inhomogeneous, are hmnogeneous in the given
x2,x3-planes. It has been shown in reference 16 that equation (16),
in effect, may be applied for such fields to obtain the mean-square
fluctuations pertaining to a given plane of homogeneity.

$
+ As a result of the preceding.discussion, the single-wave interac-

tion results for constant-pressure combustion will be used to obtain
p- the spectral densities of the fluctuation quantities at the flame front
3 -7C and e-7b are unity andwhere the attenuation factors e

.
(c ‘<b= a=~=v. For conciseness define RA sin~ ~ R(l) + ~(2),

WAsin41sWl+iW2, GA sin~= Gl+iG2, NAsin Q=Nl+ mz,
HAsinqs H1 + iE2, and CIA sin VSC. With the notation

and, for example,

as in equation (16), the following equations are obtained by analogy
with equations (13) and (C8) for the case where heat-release pertur-
bations are absent, that is, ti = O:
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—.

{*)=’(j!)‘R%c

()u; ~
d+ = W dZ1,c + %,C

t

()
~~ . - iw cos e d~, c - (cot q cog e + clsin e)ul,[

u

In the velocity

side represents

the second term

=- iw sin e dz~,c - (cot q sin e - Clcos e)dzl,(

t

r)
d+ = N dzl,c + GdZ1,c

= iN cos e dzl,c -
( )
cot ‘Zcos * G + C1sin e till{

(

cOtqstieG
. iN sin 6 dz~,c - T )

Clcos e dzl,(

d(~~)=-f
iH

7 dzl,c = -~ %,C
1

Et

()‘T
= H dZ1,c

‘(%,.)
=Htan Q cos 6 dzl,c

‘(%,C)
.Htanfpshedzlc >

ratios of equatiorm (17), the first term on the right

‘iJ)?jc or ‘i,p,b,
the potential-flm contributions u u’

1.

(17) “

.

Ui,s,c
—

represents the shear-flow contributions u
or

‘i,s,b The subscript i takes on the values 1, 2, and 3.
u“ &

.
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At a given instant the spatial mean-square potential- and shear-.
flow contributions of.the disturbance fields are obtained froni
equations (17):

2
t%

()
2

‘2,s,b +
u

($J‘@y=J-jy’”’)%,.%,=--

R?=r+R?cr=J!J’’7kc%c+~>c%.

The hesn-squere flame front qumtlties sre

#= Jfy(.*m =:,.%,.
--
.

~T .fJ1’(H*H) d=;,c%,ck2cos2q
--

0
——
~2

X2,C Jff‘%,.= -m
(EFH) tan% ~,c~,=
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Frcm equations (C8) of appendix C, with ,%’ = O:

~*R _ (T - 1)2(T tarl’2Q- 1)2

A sin2q

W*W= (’c- 1)2(% tarl% - 1)2
A

G*G . %2sec2q A - 4T(T2 - l)tan2~

A(l + ~2tan2q)
r~

(19)

J
~*N=%(%- 1)2(’ctan2q - l)2sec2q

A(l + #’tan2~)

4$sec2q
E*H . A

Mean-Square Fluctuations for Initial Isotropic Turbulence
.

For a given combustion process (’c and U prescribed), the spatial .
mean-square fluctuations of equations (18) depend upon the quantity

*
%,C%,CJ which is specified by the type of turbulence present in the

combustible mixture. The results obtained in reference 16 for the in-
teraction of axisy?nmetricturbulence with a shock wave suggest that for .-

the present ,problemthe degree of anisotropy of the incident turbulence
field may not be critical. Far simplicity, the turbulence in the cmn-
bustible mixture is assumed isotrupic.

As indicated in reference 10, the spectral density tensors for any
isotropic turbulence field satisfying the incompressible-flawcontinuity
equation are

*iJ(is)=Q(k)(k25i~ - kik~)

where k2 = k$+i~+k~;bij=l for i = j; and

and Q(k) is the scalar aqlitude function defining
tensor. From equations (15), (20), and (n),

%,c%, c ‘Q(k) k2sin2Q%
*

(20)

biJ = Ofori #j;

the spectral density
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or, transformin~
dk-= dkpI&lk3 =

to spherical polar coordinates k, G, q?,wherein
k2sin q dk de dq, yields

%*, C%,C=Q(k)k4dk de sin3Q dq

)

The remaining spatial mean-square fluctuation
to the intensities of equations (22) in order that
be specified, are given by

P-$’cr()Ul,s,c
2

u

1)2

Yc

Jo

(22)

quemtities, referred
the scale need not

(T tsn2q)- l)2dQ

(23aj



24 NACA TN 3407

2

()
%,p,c

u

(“’$’cr
-

()‘l,s,b
z

u

()
Ul,s)c

2

u

+

()
z

‘l, S,C
u

.

tan2(FJ- l)2df@

rA- 4@ - sin p t~2g dq

A(l + ‘c2tan2Q)

o

s

. ; #(T - 1)2J’(Ttsm% - l)%n q tan%~
A[l + T2tan2~

()Et 2
-u-

()~1, s,c
2

u

Yc

-J’ tan4q sin q ~q

2
A

()

Ul,s,c o
u

(23b)

(23c)

dq

(23d)

(23e)

(23f)

.

.

—

.

●
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.

F+$2(k)k2dk

%2

J
Q(k)k4dk

o

. . The subsctipt 1 designates a longitudinal

x

J sills q)
—d?

o A COS~
[23h)

ccmponent; subscripts 2
g and 3 des@ate the ~ateral comp&ents. Of the remiining subscripts,
w s denotes a shear-flow component; p denotes apotential.flow compo-

nent; c refers to the ccmibustiblemixture; and b refers to the burned
gas. Equations (23a) to (23g) have been integrated numerically using
S@sonrs rule with the followlng increments for (p: 2° intervals frcm
0° to .20”~5° intervals from 20° to 70°, 2° intervals from 70° to 90°,
and SO forth. IWunericalresults are listed in table 1.

~
DISCUSSION OF RESULTS

o Mean-square fluctuation quantities generated
teraction of a constant-pressure combustion front

by the linearized in-
with a weak isotropic

turbulence field satisfying the continuity equation for incompressible
flow are given by equations (23) in terms of the incident-turbulence-
velocity ccunponents. Equations (23a), (23b), and (23e) apply only at
the flame front where the attenuation factors are unity. !Ildsrestric-
tion does not apply to equations (23c) and (23d) in the assumed absence
of turbulent decay processes.

Velocity Fluctuations

Potential-flow fluctuations. - The root-mean-square velocities
associated with the attenuating pressure fields generated in the com-
bustible mixture (eq. (23b)) and in the burned gas (eq. (23e)) are
plotted in figure 2. Since these ratios apply only at the flame front
where the exponential attenuation factors are unity, they represent
mmdmum values. As is to be expected from the boundary-condition re-
quirement of equal pressure fluctuations with differing densities on
each side of”the flame front, potential-flow velocity components in
the burned gas exceed those in the combustible mixture. Both ratios
increase with increasing flame-temperature ratio> reaching asymptotic

values of @ in the burned gas and unity in the combustible mixture.
Hot-wire instrumentationwill respond to these fluctuation velocities
as well as to the shear-flcn?fluctuation velocities. In view of their
exponential attenuation characteristics,however, such contributions
would not be of importance unless measurements were made at stations
very close to the flame, that is, within a dtstance of the order of

.

,
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incident-turbulence scale. For the low flame Mach numbers encountered
in cmbustion, the contribution to the hot-wire s@nal voltage of the *

unattenuated sound waves described in the section FLAME - TURBULENCE
INTERACTION PROCESS should be quite small.

Flame-generated turbulence.
(eqs.

- The shear flow in the burned gas
(23c) and (23d)) cormtitutesthe flame-generated turbulence oc-

casioned by the presence of approach-fl~ turbulence. These velocities,
referred to the incident turbulence velocities, are also plotted in fig-
ure 2. A slight amplification of the longitudinal component occurs for g

values of ~ in excess of 7. In the lbi.t, as T becomes very large %
the longitudinal and lateral velocity ratios approach asymptotic values

of w and ~ ~, respectively.

The diagrams of figure 1 indicate that a pressure wave interacting
with the flame front can also bring about a shear flow in the burned
gas. Although the reflection sad the consequent impingement of the
pressure fields described by equation (23a) upon the flame front are .
possible, any additions to the flame-generated turbulence level through a
the reflection process would probably be negligible because of the at-
tenuating nature of the pressure field. Thus, contrary to the predic-

.

tions of references 6 and 7 that the flame-generated turbulence inten-
.

v

sity should be many times greater than the inte~ity of the incident
field, the present analysis indicates that the two intensities are
about equal.

It is interesting to note that a stream contraction (ref. 17) in-
creases the dowmtream velocity of the mean flow (as does the flame
front also), while exercising a different selective effect upon an in-
cident isotropic turbulence field. For exsmple, with a sevenfold iu-
crease in the downstream velocity of the mean flow, the longitudinal
velocity ratio (in the absence of decay effects) is 1.01 for the flame
front and 0.31 for the contraction. The corresponding lateral velocity
ratios are 0.87 and 2.29, respectively.

.—

Turbulent Flame Speed

The higher mass-flow burning rate of a turbulent flame as compared
with that of the correspondinglaminar flame is generally described in
terms of a turbulent flame speed UT. The flame-speed ratio UT/U iS

—

generally assumed to be equivalent to the ratio of turbulent-to-lsminar
flame surface area.

Calculation of
second-order term?.

the turbulent flmue syeed,requires consideration of .
The local instantaneous normal propagation velocity

.
s
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.

U + 5U of the distorted flame front into the combustible mixture at
. rest is

CN
Let ~ represents a steady-state=U+U~+u@ +--o ‘here ‘~. Thepert~ba*~&~Uti-

% contribution to he flame speed of order
CN ties, for e2w.@e, are written as

~;=gy+$+.. .

%C=qc+!?c +..> J

@The superscript on a fluctuation quantity Et

3 the perturbation. As before, 5U/U is taken as

.

indicates the order of

1

m nr2< T: (y- l)nr2 ‘-~ p; P;
—=— .=
u

Tc M— ~
U Tc

r

r—
yRg PCU2 PCU2

Substitution of this expression into equation (24) and performing the
indicated expansions @.eld the following relation, which is correct
through second-order terms:

;($+[+++k%al]-
first- second-order
order terms
terms

.(iJQ+@&.)+(Q+g-J$?jc+u~c,’Jz),J?c,s)
u T- U u u 2,C u 3,C

v v
first- second-order terms
order
terms
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Averaging this equation yields

NACA 93!?3407

.

For the limiting case of constant-pressure
ratio of turlnzlent-to-laminarflame speeds

.

to

combustion, I’= O. Thus, the 3

can be written for this case

terms on the right side of equation (25) representThe first two
the zatio of averaged turbulent-to-laminarflame surface area. The
third term is a correlation coefficient representing the transverse-
velocity-fluctu.atloncontribution to the turbulent flame speed caused
by flame-front distortion. It is interesting to note that only the
transverse velocity fluctuations appear explicitly. The second term
has already been determined (eq. (23g)). The third term may be ob-
tained frcm equations (C8) as

@ -@l
+fl +@ .E

%?,. - X3,C 2 r{
~T - l)t.n4Q+ (T2 + l)t8n2qI+ (T + 1)] *

1
+idq (26)

o

The imaginary term has not been written out inasmuch as it does not con-
tribute to the integral. The results of the indicated integrations are
listed in table I.

Equation (25) for the flame-speed ratio UT/U may also be written
in the form

‘T
LF’

-u-S1+S* (27)

where the flame-speed parameter S is obtained from the values listed
in table I for equations (23g.)and (26). The variation of this larem-
eter with the fl.me-temperatureratio % shown in figure 3 suggests,
on the assqtion that the flame-front slopes ~

X2,C - %3, c ‘m-
ern contributions to the right side of equation (25), that the flame

.

&

.
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.

front with the hfgber heat release is distorted less by a given inten-
sity of turbulence. For the degenerate case T =. 1 (no heat release),
the parameter S becomes infinite.- a condition compatible with this
viewpoint.

The present amalysis requires that the flame-front slopes, as well
as the other perturbation quantities, be small. The preceding discus-
sion suggests that the incremental flame-speed ratio (~ - U)/U may be

m of second order as a result of this restriction to small flame-front
is
cl
CA

slopes.

Combustion Noise

The root-mean-squarepressure-fluctuation coefficient @/,$,

which applies directly at the flame front, is plotted In figure 4 for ‘
the limiting case of constant-pressure combustim. The pressure fMc-
tuations are a measure of the random noise generated by the interaction

. of the flame front with the incident turbulence. In acoustical measure-
ments the noise level in decibels is usually given with respect to a
reference pressure of 0.0002 dyne per square centimeter (ref. 18), which
corresponds approximately to the pressure amplitude of a plane sou@
wave of minimum audible intensity at a frequency of 1000 cps. The noise
pressure level in decibels is defined by the relation

(’nP:2noise pressure level S 20 1%10 o.om2 r= 74 + 20 loglo p;z

(28)

where the pressure fluctuations in the combustible mixture are given in
dyues per square centtieter.

Equations (23a) and (28) indicate that the noise level shouldbe
particularly dependent upon flme speed. Propane-air and acetylene-
air canbustion, which are @aracterized by a low flame speed and a
fairly high flame speed, respectively, willbe considered for illIMs-
trative purposes, Pertinent data for these flames at maximum-flame-
speed and stoichiometrie conditions for an ambient temperature of 2S0 C
and a pressure of 760 millimeters of mercury are given in table II. The
adiabatic equilibrium flame temperatures, at which the total enthalpy of
the fuel and oxidant equals the total enthalpy of the products of reac-

. tion, were calculated using the procedure of reference 19. (Total en-
thdpy includes the chemical contributions to the inte~ energy=)
Flame-speed data were obtained fram references 20 and 21.
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If the flame-front turbulence intensity e/.~..~@~@ :
equsl to 10 percent, noise pressure levels of 59 &d 81 decibels are
obtained for propane-air flames and acetylene-air flmes, respectively,
under conditions for meximum laminar flame speed. At an approach-flow

—

velocity of 1225 centimetersyer second, which is i.nthe range of ve-
locities usually encountered in ccxnbustionexperiments, the correspond-
ing intensity of the approach-flow turbulence would be about 0.3 percent
for the propane-air mixture and about 1 percent for the acetylene-air

l$?mixture.
“8

Thus, the pressure fluctuations generated at the flame front when
the incident turbulence is of low intensity, although small as compared
with ambient pressure, are apparently of fairly high acoustical inten-
sity for constant-pressure combustion. Because of the exponential at-
tenuation of these pressure fields, the “far-field”acoustic intensity
(the intensity at distances very far frcm the flame frent) approaches
zero. For cases other than constant-pressure combustion, a finite
“far-field” intensity is obtained.

The
field of
pressure

CONCLUlU3?GREMARKS

present linearized analysis has treated the interaction of a
isotropic turbulence with a free flame front under constant-
combustion conditions with no turbulence decay processes or

heat-release fluctuations. The interaction produces an anisotropic
turbulence field in the burned gas which has sxisymmetry about the
main-stresm direction.

.
Contrary to the results predicted by several

current theories of turbulent flame epeed, the flame-generated turbu-
lence velocities caused by approach-flaw turbulence do not differ
greatly from the turbulence velocities of the incident field.

The incremental flame-speed ratio (UT - U)/U as obtained from the
present analysis is a second-order quantity consisting of two parts:
One part represents the root-mean-square area of the turbulent flame
front; the other represents the contribution of the transverse veloc-
ity fluctuations which result from the flame-front distortion. The
flame-speed ratio ~/U for a given level of incident-turbulencein-

tensity
G/

U is found to decrease with increasing heat-release

rates (increasingvalues of T).

ture
give

Randan pressure fluct~tions generated in both the combustiblemlx-
and the burned gas, although small cc.mparedwith ambient pressure,
rise to appreciable noise levels (59 to S1 decibels) directly at

.

.
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the flame front even for very moderate intensities ofapproach-flow tur-
. bulence (flsme-front turbulence intensities of 10 percent). For the

limiting case of constant-pressure combustion, the pressure waves at-
tenuate e~onentially with distance from the flame front, so that the
“far-field” intensity approaches zero.

Lewis Flight Propulsion Laboratory
u National Advisory Committee for Aeronautics
% Cleveland, Ohio, January 25, 1955
w

.

.

.
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APPENDIX A

SYMBOLS

l!hefoIMwing symbols are used in this report:

A

A

a

‘1’B2’B3

b

c

c

‘??

%

D~

d

El

Fij(@

f

G

Gl,G2

H

Hl}H2

hlyhz - . ● hlo

.

magnitude of two-dimensional vorticity-wave velocity
vector in caibustible mixture

two-dimensional vorticity-wave veloci@ vector in com-
bustible mixture

speed of sound

coefficients defined in eqs. (4)

constant defined in eqs. (7) and (9)

amplitude of combustiblemixture shear-wave cczuponent *

parallel to x3,c-axis

const-t defined ineqs. (7) and (9)
.

specific heat at constant pressure

specific heat at constant volume

u/(u - V), eqs. (4)

constant defined in eqs. (7) and (9}

-V/U, eqs. (4)

spectral tensor function

constant defined in eqs. (7) and (9)

(~ -I-i~)/A sin Q

amplitude coefficients of shear-wave longitudinal com-
ponent in burned gas

(H1 + f~)/A sin qJ

amplitude coefficients of fleme-front displacement

groupings defined in eqs. (B16)

.

.
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11>12
.

J(~),J(2)

k

N

ITl,N2

n

P

P’

Q

R

‘g.

%’%

amplitude coefficients of shear-wave trmverse conk
ponent in burned gas

amplitude coefficients of pressure wave in burned gas

P~
J(l) ~ (2) ~ ~ J2, eqm-@ q; J (1(M)

c (3Cu

coefficients defined in eqs. (4)

magnitude of wave-number vector k

wave-number vector of shear wave in combustible mix-
ture with components k;, k; in xc,y-coordinate

system, with components kl, k2, k3 in Xl,c,

X2,=, x3,c-coordinate system

amplitude coefficients of density associated with
‘shear entropy wave in burned gas

flame-front Mach number, M Z U/ac

a2/yU2, eq. (B16)

(Nl + iN2)/A sti v

amplitude coefficients of longitudinal velocity com-
ponent associated with pressure wave in burned gas

exponent used in representation of laminar flame speed
as function of combustibl”e-mixturestatic temperature

amplitude coefficients of lateral velocity ccmponent
associated with pressure wave in burned gas

static pressure

static-pressureperturbation

term not contributing to the integral in eq. (26)

(R(l) +R(2~)/A Sinq

gas constant

amplitude coefficients of pressure wave in conibustible
mixttie
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R(1),R(2)

r

rl)rz

s

T

Tij(~>t)

TS

t

u

UT

~r

‘1,CJU2,CJU3,C

‘l,b~”2,b~“3,b

v

‘T

v’

v

W1)W2

W!

X12X2

NACA TN 3407
.

(2) = R2/yM2, eq. (1OC)R(1) s R1/TM?, R

separation vector

constamts used in representation of lamhar flame
speed as function of combustible-mixturestatic
temperature

flame-speed parameter, eq. (27)

s%atic temperature

velocity correlation tensor for homogeneous turbulence

stagnation temperature

time

laminar or fundamental flame speed

mean turbulent flame speed

longitudinal component of velocity perturbation

velocity perturbation components in combustible mix-
ture parallel to Xl,cy X2,c~ X3,C coord~ate SXeS~

respectively

velocity perturbation ccnnponentsin burned gas parallel
to xl,b~ ‘2,b~ ‘3,b coordinate axes, respectively

mean velocfty of bmm.ed gas

mean velocity of Inrrnedgas in turbulent combustion

lateral ccmrponentof velocity perturbation,-

.

.-

.

—

(Wl + iW2)/A sin q

amplitude coefficients of longitudinal
ponent associated with pressure wave
mixture

veloctty ca.n-
in cambusttble

lateral ccmponent of velocity perturbation (compment
parallel to plane of unperturbed flame &ant end
normal to u’ and V’ components)

.

amplitude coefficients of lateral velocity ccmponent
associated with pressure wave in combustible mixture -
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k

x~
.

xc

%,b

‘2,b

‘3,b

i xl,c

.
X2,C

X3,C

Y

g(~,t)

r

Coord-te h xbjy-sys~~

unperturbed flame-front
burned gas is at rest

coordinate in xc,y-system

unperturbed flame-front

35

measured in direction of”

travel relative to which

measured in direction of
travel relative to which

combustible mixture is at rest

coord~te ‘i~,b}x2jb~x3,b-systa measWed ‘ind-
irectionof unperturbed flame-front travel relative
to which burned gas is at rest

coordinate orthogonal to x~,b and x~,b and making

angle 8 with y-coordinate

coordinate orthogonal to ‘l)b ‘d ‘2,b

coordinate in x1,c,x2,c,x3,c-system measured in di-
rection of unperturbed flame-front travel relative
to which

coordinate
angle 8

coordinate

coordinate

combustible mixture

orthogonal to Xl,c
with y-coordinate

orthogonal to Xl)c

is at rest

and X3,C and making

and X2,C

orthogonal to Xc and ~

random amplitude vector of shear-field Fourier
comporient

coordinate orthogonal to

grouping defined in eqs.

1
(r- l)nr2Tcn”~M

Xc and y

(B18)

ratio of specific heats

+ - l)2t=4Q,+ 2%(T2 + 2Z - l)tan2q + (T + 1)2

grouping defined in eqs. (B2#]



E’X2,C

c’
X3,c

P

Pt

a

‘c

*i@,t)

~

*

Q

Subscripts:

1,2,3

ITACATN 3407

grouping defined in eqs. (B21)

variable upon

variable upon

angle between
wave and xl>

which pressure wave depends, eqs. (7)

which pressure wave depends, eqs. (7)

polarization plane of incident shear

C}X2,C-Plane

coefficient defined in eq. (3e)

flame-front displacement

flame-front displacement velocity

flame-front slope

flame-front slope

flame-front slope

static density

with respect to

with respect to

with respect to

static-densityperturbation

kiUt + k~y, eq. (lOj)

flame-temperature ratio, TS,b/TS,c

spectral density tensor

angle between wave-number vector of
wave and direction of unperturbed
travel, tan Q= k~/k~

~,c-coordinate

xs,c-coordinate

y-coordinate

()u
u- Vk;% + ‘iy

n

.

.
incident shear
fleme-front

scalar amplitude function defining spectral density
tensor

orthogonal coordinate desig&tion
.
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c

cr

(m”

Superscripts:

burned gas

combustible mixture

critical.

designates order of steady-flow quantity

potential-flow velocity component

shear-flow velocity component

designates order of fluctuation quantity

denotes complex conjugate

denotes fluctuation quantity except where otherwise
specified

.

.
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AFPENDIX B

SOLUTION FOR SINGLE-WAVE INTERAWION

The arguments of the various fluctwtion quantities are equal at

the flame front where xc = Ut and xb
= (U-v)t. Therefore, sub-

stituti~ equations (10) into equations (3) and (5) and separately
ecwattig the real terms and the imaginary terms provide the folltiu
sit of equatio~:

() B1
J1l+~ +BIL1-B~I - B2~ =

()

Bl
J21+~ +BlL2-132N2-

()
ir~1- + -L1-Kl~l-Kl~= -K4W1-K4A

-B.#sinQ-

B2G2 = - B2W2

\

B2W1 + B3R1

(Bl)

+ B3R2 )

+%

+ J2

+

+

()J2 1-+ - L2 - KlN2 -K1G2 = . ~W2 + K@2 - (K1- ‘4)H2 J
(B2)

- D1~(Dl - l)Hl

L2 + (Dl -

- DIN~

1)H2 - D1N2 -

Asin Q+

w2+#R2

()u-v
‘fb ~Nl -

}

dbN2 = m2(-fbJl + bbJ2)

()
u-v

dbIil- fb ~ ‘2 = m2(-~Jl - fbJ2)

(B3)

(B4)

(B5)

.
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()u-v
‘fb ~ Pl

}

- dbP2 = m2~J2

()

u-vdbpl - fb ~ p2 = - m2cbJ1

()u
-% u -

}

~ G2 = k212

()
u-kl ~ ~ = ’211

fcw~ - dcW2 = ~ (fcRl + bcR~)
TM

dcW1 + fcW2 =
}

~ (-b>= +f~2)
TM2

dcxl + fcX2 = - —
J

$ %$1

H1-W1-

}

A sin q .AR1

H2 - W2 = AR2

From equatims (B5), (B6), (B8), (B9), and (B1O),

N~

}

= h1(h2J1 - h3J2)

N2 =h1(h3Jl + h2J2)
.

}

P1 = hl(-h4J1 - ~J2)

P2 = hl(~J1 - h4J2)

W1 = ~(h7R1 + h8R2)

w2 = h6(-h8R~ + h7R2)}

39

(B6)

(B7)

(Em)

(B9)

(B1O)

(BU)

(B12)

(B13)

(B14)
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where

NACA ‘m 3407
.

H1 =

}

ARl+A sinq +~(h7R1+~R2)
(B15) -

H2 = AR2 + ~(-h~l + h7R2)

‘7 z

*

fz - bcdc
c

bcf= + dcfc

ccdc

Ccfc
1

Fran equattons (B4], (B7), (B12), (B14), ~d (B15)~

where

‘1 =%R1- ‘2R2 - a3Jl -
a.4J2-1-a& Sin V

G2 = U2R1 + ~R2 + a4J1 - KJ2 }

%
— h1h4%Z k~D1

ki
U4 = — h1h5

k;D1
t

(B16)

.

(B17)

(B18)
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.

Then, from equation (B2),
.

[ ][
L1 = J1 1 - + - K1(h1h2 - m3) + J2 Kl(q@3 + a4~ +

R1[K1(h6h7 - @ - K2 + (Kl - K4)~ +

‘2[Kl(%h8 + a2)] + A s~ q[~l(l - ~)]

s L2=-
[

Jl[Kl(h1h3 +~4] +J2 1 -+- Kl(hlhz
G

R2[Kl(~h7 - al) - K~ + (Kl - K4~]

- K3Z’

-%j-

.

(B19)

The various disturbance amplitude coefficients of equations (10)
have now been obtained in te?m.mof the coefficients Rl, R2, Jl, J2
and the parameters A sin ip and T1. Fran equations (Bl) and (B3),

}

JIG1 + J2&2 + R1G3 + R284 = 65

-J1S2 + J2e1 - R1G4 + R2C3 = O

Jl&6 + J2G7 + R168 + R2G9 = Glo

-Jle7 + J2&6 - R169 + R2~8 = O

where

()~8~(~+Kl)(h6h7-~) +(D1-l)A- K2+* +(K1 - K4

Gg = (Dl +Kl)(h6h8 +a2)

S1O S K3%f - A sin Q(Dl+K1)(l - a5)

(B20)

(B21)
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or

RI .

R2 .

NACA TN 3407
.

.

(B22)

(B23)

where

51 = 61( C1C9 -

‘1

~4s6) + s3(c2G6 - el&7) - G2(G4c7 - c2U9)
●

52 * 61(c~68 - ~3&6) - c4(e2&6 - el’67)- c2(c3e7 - c2e8)

53 ~ 6~(e2E6 - &lU7)

8A =
(B24) “

‘6(8169 - ‘466) + &8(c2C6 - elc7) - G7(e467 - ~~9)

55 = 156(C168 - C366) - C7(C3f37 - ezee) - c9(e266 - c167)

56 a ~lO(~Z~G - cls7)

Equations (Bll) to (B15), (B17), (B19), (B22), and (B23) provide the
formal solution of equations (Bl) to (B1O).

.

.
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APPENDIX c!

AT’I!ENUATINGWAVESOLUTION FOR CONSTANT-PRESSURE COMBUSTION

If terms of order M2
following relations for the

%)—=
??~

Pc ~-v
.=— .
@b”

are,retai.ned,equations (1) provide the
unperturbed flow quantities:

1- y(z - 1)M2+ . . .

[
T1++(T-1)M2 +...

1

%Ts,c 1 ●

U2 ‘z (y -11)M2

U2 2M2

3 %=T[2 - (y - 1)(= - 1JM2 - (T2 - 1)=(= - l)@ + “ “ “J
a
1. With these relations, equations (4) take the form
2

B1 =yTM2, B2 = ~M2, B3 = 1 -t-[1+ T(T - 1)]M2

[
D1=~I 1 [ 1-~(T-:)M2, E1=(T-1)1+~ ~M2

K1 =K4=(T-
[

l)@, K2=~l+y2 1~ (T- 1)M2 , T-K3. ++T J1 M2

(cl)

and equations (9) may be written

bc= ~=- kiM2) cc = cb = k~> dc = k;(l + M2), db = k~(l + ~M2)

(

k;z -

)}

$k~2
f: = kj2 - (k~2 - k~2)M2, f: = k~2 - = M2

(C2)
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If only the leading terms in powers of M2 are retained, equations
(B16) and (B18) of appendix B provide the following relations:

hlh2
T%an% Tt!anq

= ‘1h5 ‘~M2(~ +=2t=2q)} ‘1h3 = ‘1h4 =
1

YM2(1 +T2tan2q)

(C3)

# [1-(T-l)tanqz sin2qal .

1

a2 = %inz(p tsm (p

yM2

$tan%$l
%5=

TM2(1 +%2tan2Q)
.
$tan3qa4 .

yM2(l+ ‘c2tan2~)

a5 . %[1 - (z - l}tan2Q] I

(C4)

From these relations:

“}
(T . l)sin2(p(%tan2q - 1) .

hlh3 + a4 = ~, h6h7 - ~ =
TM2

(C5)

h1h2 - a3 = O, ~~+a2=
sin q cos Q(l + %tan2Q)

TM2

From equations (B21) and (C5),

.

.

.
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and from equations (B21), (B24), and (C6):
*

51 = ‘in :;:s ‘ ~~ + 1)(1 + ~ tan2@) -2 tan2Q(~ - 1)~(~ tan’~ - 1] ‘

.

54 _ -(~ - l)tan? sin%(% tan2Q - 1)

y%f%

~ = (7+1)(% tan2q+l)sin2Q
5

r%% I
tanqI =,- *

5fj=—— [(-
1

1)(T tan% - l)A sinq
TM%

(C7)

R(l) z R2/yM2, R
.

Since for constant-pressure combustion (2) SRJTM2,

and so forth, the coefficients R(l), R(2), J(l), and J(2) are obtained
from equations (B22), (B23), (C6), and (C7). With these coefficients
determined, the remainder
(B14), (B17), and (B19).

● ,

are-obtained >r~ equations (B7), (Bll) to
The amplitude coefficients are
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.

.

~(l).+
{ }
(T - l)2(Tt&. l)2ASIIIQ -[=2( T2+2T-l )iX112$+T(T2+lj ~

R(2)

{ }
= J(2) = - & (~ - l)(T2tan4q- l)A sin q+~5(T - l)tan4TI- %c%an% - T(’C+ 1)1 ~

{
J(l) -- & (T - 1)2(T ti2q -

}
l)2A SfIl , + T2~(% - ,)2W4Q + (T2 + 2’c - ,)tm29 + 2] :

L~--#,L2-Cl

Iil= T
A(l + %2t4m4)

(

(T - 1)(-Ctan% - l)[(T + 1)(T tan% + 1) -T(T - l)tEn%T tan% - 1)-JAsin @ -

{k 1 })%A&l (’r- U%n%+‘C(%+1)’81129+4 + (% + 1) :

‘2 =ifHe%7f’ ‘m2’ - ‘)[’(’+ 1)(’ ‘m2’+’) + “- l)(T’m2q - l)JA ‘in’ +

[
~2 ~(~ - ~)tm4Q - (= - ~)w20

- lK}

%“ ‘ {r(T+ 1)% t& + 1)2 +-T(%- l)%ai?ip(.tdp - 1)2]A sin rp.
@ + T%d$ )

}
7(% - lhk8dq[T(# + 2T - l)tam% + (T2 ; 1)1+

% = -“(T- 1)’=
‘{

[(% - 1)(T tan2? - 1)(T tea2@ + l)A sfnq + ~(% - l)tan4q - 2&%an2q -A(l+ %%n2q) }
‘d.+ l)J+

PI = - N2, P2 = N1

%.. -G2
—12-T~n~%“=~~

WI .-;
{ }
(T - 1)(% tan2Q - l)[T(T - l)tan2qI+ & + l)]A slnf$- [~(= - l)tan2Q + T(’C+ 1)1~

w2=-~~.C-l)tan @
A

f
(T tan% - ,)A sin q + .[. an’, + I]%

}

X1=Q. W2,X2.-W1

{
El.; 2(T + 1)(Ttm2Q + l)A sin‘W

}
[T(3T- Ml& + (.+ l)J;

.

(C8)

.

.
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?C =

For constant-pressure combustion cc = <b = ~Ut + k~y,

k~(xc -
[ 1Ut),IIb=J+-~ +(U - V)t , V =k~xc +k~y,

k;L
$

AU
=— + k~y, and a = k~Ut + k~y. At the flame front where xc = Ut ,

and ~b = (U- V)t, qc = ~ = 0, the attenuation factors e-qc and e-qb
are unity, and the arguments of the disturbsace waves have the form
(k~Ut +k~y).

w
1+
a
w The procedure of reference 23 is utilized in reference 22 to treat

a similar interaction problem for consideration of flame-front stability.
It is assumed that there are first-order perturbations in the lsminar
flsme speed U (in the present notation). Reference 22 presents results
only for the special case where the plane of polarization of the inci-
dent shear wave is in the plane xl c - x~,c(e = 0°) and the wave-number
vector is parallel to the unperturb~d flame front (q = 900). The re-
sults of the present analysis were compared with those of reference 22
for the case of an absence of first-order perturbations in the laminar

. flame speed and for the special case of 8 = 0° and CP= 90° without
heat-release perturbations. Although agreement as to sign and maguitude
is obtained for the shear-field velocity components, apparently differ-

. ences in sign occur for the potential-field velocity-component ampli-
. tudes as indicated in the following table:

Present analysis Analysis of
reference 22

$,C :’
u -A

v’p,c
T

iA” -iA

~,b
T A -A

* iA. ill’

Consideration of conservation of momentum across the flame front indi-

;,C/” ‘d v;,b/ucates that v should be of the same sign. The pres-
ent analysis is in agreement with this consideration.

.

.

—--



48

1.

2.

3.

4.

5*

6.

7.

8.

9.

10.

U_.

Damkohler, Gerhard:
in Gas Mixtures.

Shelkin, K. 1.: On
1947●

NACA TN 3407

REFERENCES

The Effect of Turbulence on the Fleme Velocity
NACA TM 1112, 1947.

Combustion in a Turbulent Flow. NAC!ATM 11.10,

.

BolJ.inger,Lowell M., and Williams, David T.: Effect of Reynolds
Number in the Turbulent-Flow Range on Flame Speeds of Bunsen 2
Burner Flames. NACA Rep. 932, 1949. (SupersedesNACATN 1707.) 8

Willi-, G. C., Hottel, H. C., and SCU1OCIK, A. C,: Flame Stabilf.
zation and Propagation in High Velocity Gas Streams. Third Sympo-
sium on Combustion and Flame and Explosion Phenomena, The Williams
& Wilkins Co. (Baltimore),1949, pp. 21-40.

Markstein, G. H.: Interaction of Flame Propagation and Flow Dis-
turbances. Third Symposium on Combustion and Flame and Explosion “ ‘-
‘Phenomena,The Williams &WilMns Co. (Baltimore),1949, pp. 162- i
167.

Karhvitz, B&la, Denniston, D. W., Jr., ~d Wells, F. E.: Investiga- “
tion of Turbulent Flames. Jour. Chem. Phys., vol. 19, no. 5, May
1951, pp. 541-547.

Scurlock,A. C., and Grover, J. H.: Propagation of Turbulent Flames.
Fourth Symposium (International)on Combustion, The Williams &
Wilkins Co. (Baltimore),1953, pp. 64~-658.

iestenberg,Arthur A.: Flame Turbulence Measurements by the Method
of Helium Diffusion. Jour. Chem. Phys., vol. 22, no. 5, Wy 1954,
pp. 814-823.

Wohl, K., Shore, L., Von Rosenberg, H., and Weil, C. W.: The Burning
Velocity of Turbulent Flames. Fourth SymposiW (International)on
Combustion, The Williams &Wilkins Co. (Baltimore),1953, pp. 620-
635.

Batchelor, G. K.: The Theory of Homogeneous Turbulence. Cambridge
Univ. Press, 1953.

Carrier, G. F., and Carlscm, F. D.: On the Propagation of Small
Disturbances in a Moving Ccu.upressibleFJuid. Quarterly Appl.
Math., vol. 4, no. 1, @r. 1946, pp. 1-12.

.

.



NACA TN 3407 49

12.
9.

r-

&

13.

14.

15.

16.

17.

.

18.

19.

20.

21.

22.

23.

,

Moore, l?ranklinK.: Unsteady Oblique Interaction of a Shock Wave
with a Plane Disturbance. NACA Rep. 1165, 1954. (Supersedes
NACA TN 2879.)

Clark, Thmas P., and Bittker, Ikvid A.: A Study af the Radiation
frcm Laminar and Turbulent Open Propane-Air Flames as a Function
of Flame Area, Equivalence Ratio, and Fuel Flow Rate. NACA RM
E54F29, 1954.

Dugger, Gordon L.: Effects of Initial Mixture Temperature on Flame
Speed of Methane-Air, Propane-Air~ and Ethylene-Air Mixtures. N.ACA
Rep. 1061, 1952. (Supersedes NACATN’S 2170 and 2374.)

Moyal, J. E.: The Spectra of Turbulence in a Compressible Fluid;
Eddy Turbulence and Random Noise. Proc. Cambridge Phil. Sot.,
vol. 48, pt. 2, A~r. 1952, pp. 329-344.

Ribner, H. S.: Shock-Turbulence interaction and the Generation of
Noise. NACA TN 3255, 1954.

Ribner, H. S., and Tucker, M.: Spectrum of Turbulence in a Con-
tracting Stream. NACA Rep. N3, 1953. (SupersedesNACATN 2606.)

Morse} Philip M.: Vitiation and Sound. Second cd., McGraw-Hill
Book CO., tiC., 1948.

Hottel, H. C., Williams, G. C., and Satterfield, C. N.: Thermody-
namic Charts for Combustion Processes, Pt. 1. John Wiley &Sons,
Inc., 1949.

Gerstein, Melvin, Levine, Oscar, amd Wong, Edgar L.: Fundamental
Flmne Velocities of Pure Hydrocarbons. I - Alkanes, Alkenes,
-es, Benzene and Cyclohexane. NACA RME50G24, 1950.

Levine, Oscar, and Gerstein, Melvin: Fundamental Flame Velocities
of Pure Hydrocarbons. 111 - Extension of Tube Metiod to High Flame
Velocities - Acetylene-Air MLxtures. NACA RM E51J05, 1951.

Markstein, George H.: Interaction of a Plane Flame Front with a
Plane Sinusoidal Shear Wave. Jour. Aero. Sci., vol. 20, no. 8,
Aug. 1953, pp. 581-582.

Ribner, H. S.: Convection of a Pattern of Vorticity Through a
Shock Wave. NACA Rep. 3164, 1954. (SupersedesNACATN 2864.)

*

.



W I. - FI.M4x-mmmFHc&Im!mAmIml FLmm!rIon RATIOS

q /mj{ET& {EJ{- (TJ{g$~i =&&
(q. (:C)) (q. (Z3d)) (-. (z~e)) (w. (z~)) (q, (Z3f)) “

(eq. (:3a))

1 1.CKWO 1.0020 0 0 0
1.5

1.0200
.6aM .9320

l.mxl
-.-.-- ------ ------ ---.-- 6.&2 1.9533

2 .8814 .91i?o .7024 .em3 .7146 .6109 2.2W2 1.4270
2.25 ------ ------ -.---- ---.-- ------ ------ 1.6501
5 .9103

1.2626
.8904 .ErZ35 .7623 .6356 .4666

3.5

.7974
------

.9439
------ ------ ------ ------

5 .9676

------ .5559
.8772

.W98
.8s25 .e#4

7 1.CX167

.8416 .6s37 .Z6zl .5627
.8727 .9876 .8856

M
.9$W .2388

1.0452
.ES6

.87c0
.4084

1.0s52 .9234 1.m97 .lzm .C692 .2664

15 1.063?I .8662 1.0786 .94m 1.0623 .1462
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Fuel-air ratio

Volume percentage

of fuel in air

Leminar fleme

speed, U,

cm/sec

Adiabatic fhme-

temperature

ratio, ‘C

TABLE II. - MDROQUWN-MR FLAME DATA AT SPECIFIED CONDITIONS

(P. = 760 ~ Hgj Tc . 25° C)

Propane, ~H8

At

stoichiometric

0.0638

4.04

37.5

7.70

At

UdmlIJn u

0.0721

4.54

39

7.45

Ethylene, C.$34

At

wtoichiometric

0.0676

6.54

64

7.95

At

BXilmnn u

0.0757

7.65

68

8.00

3493 * ●

Acetylene, C2E$

At At

Btoichiometric UwXb.ml u

0.0753 0.1040

7.75 10.70

I-23.5 141

8.64 8.71
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efracted plane sound-
wave front

Refracted vorticity

ncident vorticity-

1 Combustible-mixture side

Incident vorticity vave-
number.vector

successive flame-
front pesltions

\
Reflected plane sound
wave front

@

1

(a) Interaction for wave-number vector inclinations generating plane sound waves.

Refracted vorticlty-

Incident vorticity-

(’l-
~cr,c

Incfdent vorticity wave-
number vector

T Successive flame-
fmnt positions

(b) Interaction for wave-number vector inclinations generating noncoalescing
cylindrical sound waves.

.

.

Figure 1. - Wave foznnationarising from interaction of flame front with vorticity wave.
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Figure 4. - Effect of flsme-temperature ratio on random
pressure fluctuations generated at flame front.
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